Context-Specific Value Inference via Hybrid Intelligence

Enrico Liscio

Value Alignment in Sociotechnical Systems

Which values are **relevant** to a decision-making **context**?

How do different stakeholders prioritize the relevant values?

Liscio et al. "Value Inference in Sociotechnical Systems." AAMAS, 2023.

Liscio et al. "Value Inference in Sociotechnical Systems." AAMAS, 2023.

Stakeholders' **actions** (e.g., how they choose among alternative options) and **justifications** (how they motivate their choices).

The set of **relevant values** and the **preferences** that a stakeholder attibutes to them.

Value Identification

Value Identification

The challenge of identifying the values that are **relevant** to the decision-making context.

We strive to perform a **bottom-up** value identification that is based on the input of the relevant stakeholders.

Al helps us to scale, but we need (and want) humans to interpret the data.

Hybrid Intelligence

The **combination** of human and artificial intelligence can achieve more than the sum of the two.

Example: shepherd and shepherd's dog.

Example: Survey Data

Researchers in TU Delft performed two Participatory Value Evaluation surveys to gauge citizens' opinions on these topics:

Mouter et al. "Public participation in crisis policymaking. How 30,000 Dutch citizens advised their government on relaxing COVID-19 lockdown measures". PLoSONE, 2021.

Itten et al. "When Digital Mass Participation Meets Citizen Deliberation: Combining Mini-and Maxi-Publics in Climate Policy-Making". Sustainability, 2022.

Axies Methodology

Liscio et al. "Axies: Identifying and Evaluating Context-Specific Values." AAMAS, 2021. Liscio et al. "What Values Should an Agent Align With?" JAAMAS, 2022.

Axies Methodology

In the exploration phase, each annotator **independently** develops a value list.

The next survey answer to be analyzed is the **most different** from the already analyzed answers.

Axies Methodology

- Axies helps in identifying the values that are relevant to a decision-making context;
- Axies is a HI methodology where NLP and AL techniques guide experts in value identification.

Value Classification

Value Classification

The process of **detecting** value-laden content in natural language.

Value classification is **subjective** by nature, and highly domain-dependent. Here, we investigate the **domain dependency**.

Cross-Domain Value Classification

We perform cross-domain classification of moral values with the **Moral Foundation Twitter Corpus** (35k tweets).

We evaluate across **seven domain** (e.g., #AllLives-Matter, #BlackLivesMatter, #hurricaneSandy) and four training modalities.

Our experiments show that models can (reasonably well) generalize to novel domains.

Liscio et al. "Cross-domain classification of moral values." *Findings of NAACL,* 2022.

What does a Classifier Learn about Morality?

Liscio et al. "What does a text classifier learn about morality? An explainable method for cross-domain comparison of moral rhetoric." *Proceedings of ACL*, 2023.

What does a Classifier Learn about Morality?

Language models recognize **small differences** in moral language across different domains.

Small but critical differences between domains may not affect quantitative results, but may **hinder usage** in a novel domain. **#ALM** and **#BLM** generally have similar moral rhetoric, but differ for the element of **subversion**

#ALM

overthrow mayhem ↓ Subversion is frowned upon

#BLM

encourage defiance ↓ Subversion is encouraged

Value Preferences Estimation

Value Preferences Estimation

The process of determining a **stakeholder's preferences** over a set of values based on their observed behavior.

Value preferences are estimated based on stakeholders' **actions** and the (processed) natural language **justifica**-**tions** to their actions.

"Valuing is Deliberatively Consequential"

But what if actions and justifications are **inconsistent**?

In case of conflicts between actions and justifications, we prioritize the preferences estimated from justifications over those estimated from actions.

This approach yields results that are **more aligned** with the value preferences estimated by humans.

Siebert et al., "Estimating Value Preferences in a Hybrid Participatory System." HHAI, 2022.

Liscio et al., "Value Preferences Estimation and Disambiguation in Hybrid Participatory Systems." Under review at JAIR.

Observing is not enough

Value preferences are often implicit to ourselves, and thus not easily observable in behavioral data.

Hybrid Value Inference

Liscio et al. "Value Inference in Sociotechnical Systems." AAMAS, 2023.

Connecting Different Components

Liscio et al. "Value Inference in Sociotechnical Systems." AAMAS, 2023.

Conclusion

- We introduced the value inference challenge and its components, focusing on its context sensitivity;
- We highlighted the importance of a hybrid intelligence approach;
- Remaining challenges: behavior observation/interpretation, context shifts identification, subjectivity, consent.

Practical Applications

• Support **policy-makers** in understanding the concerns of citizens;

Lera-Leri, Roger X., et al. "Aggregating Value Systems for Decision Support." Knowledge-Based Systems, 2024.

• Behavior change support (e.g., learning to live with diabetes).

de Boer, M.H., et al. "A contextual Hybrid Intelligent System Design for Diabetes Lifestyle Management", ECAI - MRC workshop, 2023.

Thank you! Any Questions?

Link to the value inference vision paper!

