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Problem Statement: Semantic Data Enrichment
Inputs: 

- a  source dataset
- a pool of reference data sources

Semantic data enrichment: a walk on the data transformations graph GT where at 
least one node is a reconciliation

2

Output:
- source dataset extended with more 

columns

Reconciliation Extension

Tabular 
transformation

source output

reference
data sources 

reference
KBs
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Output:
- source dataset extended with more 

columns

Reconciliation Extension

Tabular 
transformation

source output

reference
data sources 

reference
KBs

● large-scale tabular data
➔ big data processing

● against large-scale KBs
➔ fast execution



Relevancy: Enrichment for Data Analytics
● Useful in a variety of data science applications based on the analysis

1) Weather-aware scheduler for digital marketing campaigns
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Relevancy: Enrichment for Data Analytics
● Useful in a variety of data science applications based on the analysis
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www.spreadshirt.com
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decreasing the day 
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Relevancy: Enrichment for Data Analytics
● Useful in a variety of data science applications based on the analysis

2) Event-aware scheduler for digital marketing campaigns
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An Example of Semantic Data Enrichment
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KEYWORD CITY REGION Clicks Category Date

517827 Ingolstadt Bavaria 50 NewsMediaPublications 12/03/2018

459143 Berlin Berlin 42 TravelTourism 12/03/2018

891139 Munich Bavaria 36 HomeGarden 11/03/2018

Intuitively: more data attached to 
input data

Basically, a LEFT OUTER JOIN 
between datasets...

Heterogeneous data 
(different systems of 

identifiers)



An Example of Semantic Data Enrichment
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KEYWORD CITY REGION Clicks Category Date

517827 Ingolstadt Bavaria 50 NewsMediaPublications 12/03/2018

459143 Berlin Berlin 42 TravelTourism 12/03/2018

891139 Munich Bavaria 36 HomeGarden 11/03/2018

PROBLEM
No common identifiers → no JOIN



An Example of Semantic Data Enrichment
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KEYWORD CITY REGION Clicks Category Date

517827 Ingolstadt Bavaria 50 NewsMediaPublications 12/03/2018

459143 Berlin Berlin 42 TravelTourism 12/03/2018

891139 Munich Bavaria 36 HomeGarden 11/03/2018

Semantic Web of Data to 
support the enrichment task

WEB OF DATA



An Example of Semantic Data Enrichment
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KEYWORD CITY REGION Clicks Category Date

517827 Ingolstadt Bavaria 50 NewsMediaPublications 12/03/2018

459143 Berlin Berlin 42 TravelTourism 12/03/2018

891139 Munich Bavaria 36 HomeGarden 11/03/2018

WEB OF DATA

Semantic Web of Data to 
support the enrichment task

SEMANTIC 
ENRICHMENT

=
RECONCILIATION

+
EXTENSION

Target KB



Fundamentals



Knowledge Graphs



Knowledge Graph: Instances
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Rome Italy
John
Keats

death place country

capital

(subject, predicate, object)



Knowledge Graph: Types
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Rome Italy
John
Keats

death place country

capital

(subject, predicate, object)

Writer City Country

Person

Thing



Knowledge Graph: FOL View vs. Graph View
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Subject Object
predicate

Predicate(Subject,Object)

FOL VIEW GRAPH VIEW

Rome Italy
country

<Subject,predicate,Object>

Country(Rome,Italy)

FOL VIEW GRAPH VIEW

<Rome,country,Italy>



Semantics in KGs
Schema (≈ ontology) defines the meaning of general terms in the KG
● Types, e.g., City(x)
● Relations, e.g., country(x,y)

Schema definition supports inference (by deduction, or by induction, etc.)
● E.g., ∀x,y country(x,y) ⇒ (City(x) ⋀ Country(y))
● E.g., ∀x,y capital(x,y) ⇒ country(x,y)

19



Reconciliation



Apple (0.0)

Apple, Inc. (0.20)

The Big Apple (0.30)

Apple (album) (0.24)

Reconciliation
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Apple (0.0)

Apple, Inc. (0.20)

The Big Apple (0.30)

Apple (album) (0.24)

Apple (0.0)

Apple, Inc. (0.20)

The Big Apple (0.30)

Apple (album) (0.24)

Cleaned 
dataset

Value 
Reconciliation

Reconciled 
Dataset

3rd-party 
datasets

Distance score computation Candidates SelectionInput text Decision-Making

Fully-automated approaches must also
select the best candidate to returnMatching rules assign a score to 

the entities (e.g., distance)

Given a text that is a name or label for 
something, returns a ranked list of potential 
entities (based on some matching rules)

apple
< .25 min



Reconciliation: Main issues
● Precision depends on the ambiguities
● Impossible to explore the whole candidate entities space
● Human experts can not check all results
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Apple (0.0)

Apple, Inc. (0.20)

The Big Apple (0.30)

Apple (album) (0.24)

Apple (0.0)

Apple, Inc. (0.20)

The Big Apple (0.30)

Apple (album) (0.24)

Apple (0.0)

Apple, Inc. (0.20)

The Big Apple (0.30)

Apple (album) (0.24)

apple

Distance score computation Candidates SelectionInput text Decision-Making

< .25 min



Reconciliation in Tables
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KEYWORD REGION Geonames ID Clicks Category DMOZ ID Date

194906 Thuringia 2822542 64 BusinessManagement dmoz/Business/Management 11/03/2018

517827 Bavaria 2951839 50 NewsMediaPublications dmoz/News 12/03/2018

459143 Berlin 2950157 42 TravelTourism dmoz/Recreation/Travel 12/03/2018

891139 Bavaria 2951839 36 Vehicles dmoz/Shopping/Vehicles 11/03/2018

459143 Bavaria 2951839 30 HomeGarden dmoz/Home/Gardening 10/03/2018

KEYWORD REGION Clicks Category Date

194906 Thuringia 64 BusinessManagement 11/03/2018

517827 Bavaria 50 NewsMediaPublications 12/03/2018

459143 Berlin 42 TravelTourism 12/03/2018

891139 Bavaria 36 Vehicles 11/03/2018

459143 Bavaria 30 HomeGarden 10/03/2018

Reconcile category names versus DMOZ 
taxonomy (1M entities)

Reconcile region names versus Geonames 
identifiers (11.7M entities)



CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Reconciliation in Tables - Cell-by-Cell
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Altenburg (0.0) (city)

Altenburg (0.0) (mountain)

Altenburg (0.0) (city)
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Ingolstadt Bavaria

Berlin Berlin
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CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Reconciliation in Tables - Cell-by-Cell
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● We did not exploit the tabular structure!
● Cells in the same column talk about the same things

○ Not always true! Sometimes data are very noisy...

different types (city/region)
AND

different c (dataset
contains German cities only)

Altenburg (0.0) (city)

Ingolstadt (0.0) (city)

Berlin (0.0) (region)



cities in Germany!

Reconciliation in Tables - Column-by-Column
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CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Altenburg (0.0) (city)

Ingolstadt (0.0) (city)

Berlin (0.0) (city)Ingolstadt (0.0) (city)

Berlin (0.0) (region)

Berlin (0.0) (city)

Altenburg (0.0) (city)

Altenburg (0.0) (mountain)

Altenburg (0.0) (city)

● By looking at the columns, we are focusing on CATEGORIES
● We have to identify which is the category that has at least one candidate in 

each subgroup
● How many categories exist? cities, cities in Europe, cities in Italy …

○ ∼2^(m ∙ n), where m = #attributes and n = #possible values for each attribute



Reconciliation in Tables - Row-by-Row
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CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Altenburg (0.0) (mountain)

Ingolstadt (0.0) (city)

Berlin (0.0) (city)

property available 
in the KG

Altenburg (0.0) (city)

Altenburg (0.0) (mountain)

Altenburg (0.0) (city)

MIssouri (region)inRegion

Thuringia (region)
inRegion

inRegion



Reconciliation in Tables - Row-by-Row

30

CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Altenburg (0.0) (mountain)

Ingolstadt (0.0) (city)

Berlin (0.0) (city)

property available 
in the KG

Ingolstadt (0.0) (city)

Bavaria (region)
inRegion



Reconciliation in Tables - Row-by-Row
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CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Altenburg (0.0) (mountain)

Ingolstadt (0.0) (city)

Berlin (0.0) (city)

property available 
in the KG

Berlin (0.0) (city)

inCountry

Berlin (0.0) (region)

Germany (country)
inCountry



different types (city/region)
BUT

all entities have the right value
for the inRegion property

Reconciliation in Tables - Row-by-Row
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CITY REGION

Altenburg Thuringia

Ingolstadt Bavaria

Berlin Berlin

Altenburg (0.0) (mountain)

Ingolstadt (0.0) (city)

Berlin (0.0) (city)

● By looking at the rows, we are focusing on PROPERTIES
● We have to identify which are the most discriminative properties to consider
● How many properties to compare for each row?

○ ∼(m ∙ n), where m = #attributes and n = #candidates



Logic Tensor Networks

Next slides adapted from a seminar given by Federico Bianchi at UNIMIB (f.bianchi@unibocconi.it)

mailto:f.bianchi@unibocconi.it


Terminological Recap
A constant is an element of a domain (set) taken in consideration

S : {Rome, Paris, …}
T : {Italy, France, …}

A function is a relation f: S ➝ T between sets that associates to every element of a 
first set exactly one element of the second set.

Capital: T ➝ S
Capital(Italy) = Rome

A predicate is a Boolean-valued function P: S ➝ {1 (= True), 0 (=False)}.

city: S ➝ {1, 0} country: S x T ➝ {1, 0} 
city(Rome) = 1 country(Rome, Italy) = 1

I 34



Terminological Recap (cont)
An axiom: a statement in a logical language:

R(a, b)

A grounded axiom contains grounded constants:

country(Rome, Italy)

A quantified axiom is an axiom that contains quantified variables:

∀ x,y capital(x, y)

A formula is a combination of grounded and quantified axioms:

 ∀ x,y country(Rome, Italy) & country(Paris, France) & capital(x, y)

35



Logic Tensor Networks
Logic Tensor Networks [Serafini+,2016]  (LTNs) => neuro-symbolic  
[Garcez+,2008;Garcez+,2012]  combines neural network and symbolic AI.

LTNs = Neural Networks + First Order Fuzzy Logic

Key Aspects: 

● LTNs ground fuzzy logic in a vector space: continuous values in [0,1]
● LTNs assign truth values to formulas using neural networks
● LTNs can learn from both data and rules
● LTNs can be used to do inferences over rules after training

Key Idea: LTNs provide a method to learn reasoning over vector spaces
36
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Logic Tensor Networks [Serafini+,2016]  (LTNs) => neuro-symbolic 
[Garcez+,2008;Garcez+,2012]  combines neural network and symbolic AI.

LTNs = Neural Networks + First Order Fuzzy Logic

Key Aspects: 
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Logic Tensor Networks: General Idea

parent(Susan, Ann)

40



Logic Tensor Networks: General Idea

parent(Susan, Ann)

Constants are 
points in Rk

41



Logic Tensor Networks: General Idea

parent(Susan, Ann)

Neural 
Network

Each predicate 
in LTN is a NN 
(the training 
phase is on 
many networks 
as predicates)

42



Logic Tensor Networks: General Idea

parent(Susan, Ann)

( ),Neural 
Network

43



Logic Tensor Networks: General Idea

parent(Susan, Ann)

( ),Neural 
Network = [0,1]

NN + sigmoid

44



Logic Tensor Networks: General Idea

parent(Susan, Ann) & parent(Mike, Robert)

45



Logic Tensor Networks: General Idea

parent(Susan, Ann) & parent(Mike, Robert)

( ) = x,Neural 
Network ( ) = y,Neural 

Network
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Logic Tensor Networks: General Idea

parent(Susan, Ann) & parent(Mike, Robert)

( ) = x,Neural 
Network ( ) = y,Neural 
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Logic Tensor Networks: General Idea

parent(Susan, Ann) & parent(Mike, Robert)

( ) = x,Neural 
Network ( ) = y,Neural 

Network

t-norm

How do we learn these 
representations? 
Backpropagation 48

min(x,y)



Example

Parent

Ancestor

KB:

● ¬parent(mark, john)
● parent( john,mark)
● ancestor(mark, lucas)
● parent( john, susan) | 

parent( john, dania)

J M L S D 49



1  -

Example: Forward Pass
KB:

● ¬parent(mark, john)
● parent( john,mark)
● ancestor(mark, lucas)
● parent( john, susan) | 

parent( john, dania)

Parent

Ancestor

Parent

JM

We want to maximize this

( ) = 0.8 ,

50J M L S D



Example: Back Pass

Parent

Ancestor

KB:

● ¬parent(mark, john)
● parent( john,mark)
● ancestor(mark, lucas)
● parent( john, susan) | 

parent( john, dania)

1  - Parent

JM

( ) = 0.8 ,

Update using backpropagation

51J M L S D



Example: Forward and Back Pass

Parent

Ancestor

KB:

● ¬parent(mark, john)
● parent( john,mark)
● ancestor(mark, lucas)
● parent( john, susan) | 

parent( john, dania)

Parent

MJ

( ) = 0.8 ,

We want to maximize this and thus 
we update the respective values

52J M L S D



Example: Forward and Back Pass

Parent

Ancestor

KB:

● ¬parent(mark, john)
● parent( john,mark)
● ancestor(mark, lucas)
● parent( john, susan) | 

parent( john, dania)

Ancestor

LM

( ) = 0.7 ,

We want to maximize this and thus 
we update the respective values

53J M L S D



Example: Forward and Back Pass

Parent

Ancestor

We want to maximize this and thus we update the respective values

max(0.2, 0.9) = 0.9

KB:

● ¬parent(mark, john)
● parent( john,mark)
● ancestor(mark, lucas)
● parent( john, susan) | 

parent( john, dania)

Parent

DJ

( ) = 0.9 ,Parent

SJ

( ) = 0.2  | ,

54J M L S D



Logic Tensor Networks: Learning
The network is trained on a best satisfiability task: 

● Learn the representations
○ vectors for the constants
○ parameters for the predicates

 in such a way that the axioms are satisfied in the best possible way.

Given parent(Ann, Susan) we expect the 
network to learn representations for Ann, 
Susan and parent in such a way that the 
predicted value is close to 1

55



The grounding of m-ary predicate P, G(P), is defined as a function from Rmn to [0,1]

Implementing Logic in Tensor Networks

56

Linear Layer Slices of Tensor Layer Standard Layer Bias

[Serafini+,2016]

(Image adapted from [Socher+,2013])



Implementing Logic in Tensor Networks: an example

Tensor net for P(x, y) → A(y), with G(x) = v and G(y) =u and k= 2 (from [Serafini+,2016])
57



Logic Tensor Networks: Data and Rules
LTNs can learn from both data and rules.
Quantifiers are defined over a domain sample. 

parent(Mark,Susan) 
parent(Ron,Susan) 

∀ x,y parent(x,y) → 
ancestor(x,y)

Quantifiers interpreted using an aggregation function (e.g., average): 
∀ x P(x) = average value of P(x) in LTNs.

Optimize the 
representations of 
the parameters to 
support the axioms 

58



The trained network defines a new compositional language built on constants, 
functions and predicates, which can be combined arbitrary.

The trained network can be used for discovering novel inferences.

Suppose we train using a dataset of parents and ancestors relationships.

Logic Tensor Networks: After Training Inference

59



Logic Tensor Networks: After Training Inference
The trained network defines a new compositional language built on constants, 
functions and predicates, which can be combined arbitrary.

The trained network can be used for discovering novel inferences.

Suppose we train using a dataset of parents and ancestors relationships.

After training we can query LTNs on: 

∀ x,y ancestor(x,y) → parent(x,y) has truth value close to 0

60



Reconcile tables with LTNs



Embed the KB in a vector space KGE
● Each entity in the graph is mapped to a n-dimensional point in Rn

○ e.g., by Graph Embedding [Wang+,2017]

LTN-based Reconciliation

62

1

KGE

RomeItaly
Italy
ParisFrance
France
...

DBpedia

v(RomeItaly) = .5 .1 .4 … .85
v(Italy) = .5 .1 .4 … .85
v(ParisFrance) = .15 .31 .44 … .5
v(France) = .3 .11 .14 … .95
...



Get axioms from the KB ontology

LTN-based Reconciliation

63

DBpedia

∀x City(x) ➝ ∃y: country(x, y) (A city must be in a country)
∀x Country(x) ➝ ∃y: capital(y, x) (A country must have a capital)
∀x,y capital(x, y) ➝ country(x, y) (A capital must be a city of its country)
∀x ¬country(x,x) (The countryOf property is non-reflexive)
…

2

country(RomeItaly, Italy) = 1 (Rome is located in Italy)
country(ParisFrance, Italy) = 0 (Paris is not located in Italy)
City(RomeItaly) = 1 (Rome is a city)
City(Italy) = 0 (Italy is not a city)
…

Axioms



Train the LTN with axioms and KGE, and obtained the trained model (which 
represents a new language!) 

LTN-based Reconciliation

64

3

Axioms

LTN

KGE

Constants replaced by their own vector in KGE
E.g., RomeItaly => v(RomeItaly)
E.g, country(RomeItaly, Italy) = 1 => country(v(RomeItaly), v(Italy)) = 1



Schema-level table annotation
● With the language defined by the LTN we can made infinite annotations 

by combining symbols

LTN-based Reconciliation

65

4

User
Dataset

Paris France

Paris Texas

Paris France

Paris Texas

Schema
Annotation

City Country

country

Annotation
 to Rule

AR = City(x) ⋀ Country(y) ⋀ country(x, y)
(x is a city, y is a country, and y is the country of x)



Iterate over table rows and test AR for all candidates (pairwise) 

LTN-based Reconciliation

66

5

ROW 1

Paris

ParisFrance

ParisTexas

Parismythology

France

France
Île-de-France

Tour_de_France

Paris France

Candidates
Generation ScoringPairwise Test



Iterate over table rows and test AR for all candidates (pairwise)

LTN-based Reconciliation
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5

ROW 1

Paris

ParisFrance

ParisTexas

Parismythology

France

France
Île-de-France

Tour_de_France

Paris France

Candidates
Generation

1
ParisFrance
France

2
ParisFrance
Île-de-France

3
ParisFrance
Tour_de_France

4
Parismythology
France

5
Parismythology
Île-de-France

6
Parismythology
Tour_de_France

7
ParisTexas
France

8
ParisTexas
Île-de-France

9
ParisTexas
Tour_de_France

ScoringPairwise Test



Iterate over table rows and test AR for all candidates (pairwise)

LTN-based Reconciliation
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5

ROW 1

Paris

ParisFrance

ParisTexas

Parismythology

France

France
Île-de-France

Tour_de_France

Paris France

Candidates
Generation

1
ParisFrance
France

2
ParisFrance
Île-de-France

3
ParisFrance
Tour_de_France

4
Parismythology
France

5
Parismythology
Île-de-France

6
Parismythology
Tour_de_France

7
ParisTexas
France

8
ParisTexas
Île-de-France

9
ParisTexas
Tour_de_France

Pairwise Test

1
City(ParisFrance) ∧ Country(France) ∧ 
country(ParisFrance, France) .99

2
City(ParisFrance) ∧ Country(Île-de-France) ∧ 
country(ParisFrance, Île-de-France) .64

3
City(ParisFrance) ∧ Country(Tour_de_France) ∧ 
country(ParisFrance, Tour_de_France) .62

4
City(Parismythology) ∧ Country(France) ∧ 
country(Parismythology, France) .58

5
City(Parismythology) ∧ Country(Île-de-France) ∧ 
country(Parismythology, Île-de-France) .20

6
City(Parismythology) ∧ Country(Tour_de_France) ∧ 
country(Parismythology, Tour_de_France) .15

7
City(ParisTexas) ∧ Country(France) ∧ 
country(ParisTexas, France) .80

8
City(ParisTexas) ∧ Country(Île-de-France) ∧ 
country(ParisTexas, Île-de-France) .65

9
City(ParisTexas) ∧ Country(Tour_de_France) ∧ 
country(ParisTexas, Tour_de_France) .62

LTN

Scoring

the higher 
the better



Iterate over table rows and test AR for all candidates (pairwise)

LTN-based Reconciliation

69

5

ROW 2

Paris

ParisFrance

ParisTexas

Parismythology

France

Texas
TexasAlabama

TexasValley

Paris Texas

Candidates
Generation

1
City(ParisFrance) ∧ Country(Texas) ∧ 
country(ParisFrance, Texas) .76

2
City(ParisFrance) ∧ Country(TexasAlabama) ∧
country(ParisFrance, TexasAlabama)

.56

3
City(ParisFrance) ∧ Country(TexasValley) ∧
country(ParisFrance, TexasValley)

.55

4
City(Parismythology) ∧ Country(Texas) ∧ 
country(Parismythology, Texas) .56

5
City(Parismythology) ∧ Country(TexasAlabama) ∧ 
country(Parismythology, TexasAlabama)

.21

6
City(Parismythology) ∧ Country(TexasValley) ∧ 
country(Parismythology, TexasValley)

.22

7
City(ParisTexas) ∧ Country(Texas) ∧ 
country(ParisTexas, Texas) .95

8
City(ParisTexas) ∧ Country(TexasAlabama) ∧ 
country(ParisTexas, TexasAlabama)

.69

9
City(ParisTexas) ∧ Country(TexasValley) ∧ 
country(ParisTexas, TexasValley)

.68

LTN

Scoring

the higher 
the better

1
ParisFrance
Texas

2
ParisFrance
TexasAlabama

3
ParisFrance
TexasValley

4
Parismythology
Texas

5
Parismythology
TexasAlabama

6
Parismythology
TexasValley

7
ParisTexas
Texas

8
ParisTexas
TexasAlabama

9
ParisTexas
TexasValley

Pairwise Test



Paris Texas

Select the best candidates for each row

LTN-based Reconciliation
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6

ROW 2

City(ParisFrance) ∧ Country(Texas) ∧ 
country(ParisFrance, Texas) .76

City(ParisTexas) ∧ Country(Texas) ∧ 
country(ParisTexas, Texas) .95

City(ParisTexas) ∧ Country(TexasAlabama) ∧ 
country(ParisTexas, TexasAlabama)

.69

the higher 
the better

ROW 1

Paris France

City(ParisFrance) ∧ Country(France) ∧ 
country(ParisFrance, France) .99

City(ParisTexas) ∧ Country(France) ∧ 
country(ParisTexas, France) .80

City(ParisTexas) ∧ Country(Île-de-France) ∧ 
country(ParisTexas, Île-de-France) .65

Paris,_France, France

Paris,_Texas, Texas



Experimental results: Datasets
Dataset:

● 8 african countries
● No more than 50 cities for each country

Embedding:

● Pretrained DBpedia embeddings from RDF2VEC (200 dimensions)
○ Only cities and countries

● Embeddings downsized to 40 dimensions (using PCA)
○ Cosine similarity between vectors is preserved (similar vectors are still similar in the new space)

71



Experimental results: Training capital() and locatedIn()
Universally quantified axiom:

● ∀ ?a,?c,?d: locatedIn(?a,?c) -> (¬ equals(?c,?d) & ¬ locatedIn(?a,?d))
● ∀ ?a,?b,?c: capital(?a,?c) -> (¬ equals(?a,?b) & ¬ capital(?b,?c))
● ∀ ?a,?c: capital(?a,?c) -> locatedIn(?a,?c)
● ∀ ?a,?c: ¬ locatedIn(?a,?c) -> ¬ capital(?a,?c)
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TRAINING
locatedIn(): Precision:  0.95
threshold = 0.80 Recall:  0.97

capital():  Precision:  0.62
threshold = 0.95 Recall:  1.00
(In almost all cases the right pair is the one with the highest score)

Legend:
a-b: all cities
c-d: all countries

TEST
16 cities never trained (about 2 cities for 
each country)

● 16 / 16 cities properly assessed (locatedIn())
● 16 / 16 cities properly assessed (capital())



Experimental results: Training unary predicates
Universally quantified axiom:

● ∀ ?a,?c,?d: locatedIn(?a,?c) -> (¬ equals(?c,?d) & ¬ locatedIn(?a,?d))
● ∀ ?a,?c: locatedIn(?a, ?c) -> City(?a) & Country(?c)
● ∀ ?a: ¬ Country(?a)
● ∀ ?c: ¬ City(?c)
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TRAINING
locatedIn(): Precision:  1.00
threshold = 0.80 Recall:  0.99

377/378 cities satisfy City()
8/8 countries satisfy Country()

TEST
16 cities never trained (about 2 cities for 
each country)

● 16 / 16 cities properly assessed (locatedIn())
● all cities have City() value > 0.5 and Country() 

value <  0.5
● all countries have Country() value > 0.5 and 

City() value < 0.5

Legend:
a-b: all cities
c-d: all countries



Universally quantified axiom:

● ∀ ?a,?c,?d: locatedIn(?a,?c) -> (¬ equals(?c,?d) & ¬ locatedIn(?a,?d))
● ∀ ?a,?b,?c: capital(?a,?c) -> (¬ equals(?a,?b) & ¬ capital(?b,?c))
● ∀ ?a,?c: capital(?a,?c) -> locatedIn(?a,?c)
● ∀ ?a,?c: ¬ locatedIn(?a,?c) -> ¬ capital(?a,?c)
● ∀ ?y: Capital(?y)
● ∀ ?x: ¬ Capital(?x)
● ∀ ?a: City(?a)
● ∀ ?a: ¬ Country(?a)
● ∀ ?c: Country(?c)
● ∀ ?c: ¬ City(?c)
● ∀ ?c: ¬ Capital(?c)

Experimental results: Training all predicates
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Legend:
a-b: all cities
c-d: all countries
y: all capitals
x: all non capitals



Experimental results: Training all predicates (cont)
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TRAINING
locatedIn(): Precision:  0.94
threshold = 0.70 Recall:  0.95

capital():  Precision:  0.60
threshold = 0.90 Recall:  1.00

377/378 cities that satisfy City()
8/8 countries that satisfy Country()
8/8 cities that satisfy Capital()

TEST
16 cities never trained (about 2 cities for 
each country)

● 16 / 16 cities properly assessed (locatedIn())
● 16 / 16 cities properly assessed (capital())
● all cities have:

○ City() value > 0.5
○ Country() value <  0.5
○ Capital() value <  0.5 

● all countries have:
○ Country() value > 0.5
○ City() value < 0.5
○ Capital() value <  0.5 



Thanks!

Thanks to Freepik, Nikita Golubev, itim2101, Pixel perfect, Smashicons, and mynamepong for their awesome icons available for free at 
Flaticon.

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/nikita-golubev
https://www.flaticon.com/authors/itim2101
https://www.flaticon.com/authors/pixel-perfect
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/mynamepong
http://www.flaticon.com
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