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TEMPORAL ENVIRONMENTS



LEARNING IN TIME

• In many applications data come as a temporal signal: It is

natural therefore to regard learning as an interaction with an

environment.

• It allows us to explicitly write dynamical constraints on the

learning agent.

• Temporal coordinates are represented in terms of a single real

number: Functions in one dimension are much easier to

handle than functions that operate on high dimensional

feature spaces.
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UNDERLYING MODEL

In classic supervised learning tasks we basically need to find the

“rule” x 7→ f (x) that maps a feature vector x ∈ X into a

corresponding prediction y ∈ Y ; we have at least two possibilities

• Choose an element f of an appropriate functional space F
where the domain of the functions is X and the codomain is

Y by specifying regularity properties1.

• Use a parametric model x 7→ f (w , x), in which f is given and

we only need to choose the appropriate parameters w in a

finite dimensional space.

1Tomaso Poggio and Federico Girosi. “Networks for approximation and

learning”. In: Proceedings of the IEEE 78.9 (1990), pp. 1481–1497.
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EMBEDDING A MODEL IN TIME

If we allow explicit dependence on time to fully capture the

interaction with a temporal environment we can dualize the above

two alternatives:

• Choose an element f of an appropriate functional space FT

where the domain of the functions is X × [0,T ] and the

codomain is Y , where [0,T ] is the temporal domain on which

the agent is defined.

• Use a parametric model x 7→ f (w , x), in which f is given but

where now the w is chosen in a functional space of maps

t 7→ w(t).
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EMBEDDING A MODEL IN TIME CONT.

While the first of the two approaches always require to solve a

problem on a high dimensional space (how can we impose

meaningful regularity properties without introducing a strong

bias?) the last approach drastically simplify the problem.

However how should we choose the function f ?

Recent successes in AI and well known theorem on the

approximation capabilities of Neural Networks suggest this class of

functions as a possible candidate.
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SELECTION OF t 7→ w(t)

We would like to select the trajectory of the parameters w(t)

based on the following principles:

1. Causality;

2. Temporal locality;

3. Optimization of a task-related loss function.
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MACHANICS-BASED APPROACH

Classical mechanics-based dynamics based on a potential function

with dissipation for the evolution model fit all this three

requirements: 
µẅ(t) + θẇ(t) +∇U(t,w(t)) = 0.

w(0) = w0

ẇ(0) = w1

Where U is a potential that describes the interaction with the

environment trough its dependence on time2.

2Alessandro Betti and Marco Gori. “The principle of least cognitive action”.

In: Theoretical Computer Science 633 (2016), pp. 83–99.
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BATCH MODE

A perfect match with classical statistical machine learning can be

drawn for batch mode learning with the following assumptions

• Viscous limit µ→ 0;

• U(t, ω) :=
∑`

k=1 v(ω, xk) ≡ U(ω), where v(ω, ·) is a loss

function that measure the goodness of the example-target pair

xk when the values of the parameters of the model are ω.

In this limit the dynamics of the weights reduce to (the continuous

version) of the classical gradient descent algorithm.
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SGD REDUCTION

On the other hand when we allow temporal dependencies on the

potential (still in the viscous limit) we recover the computational

scheme of Stochastic Gradient Descent3:

ẇ(t) = −1

θ
∇U(t,w(t)).

3Marco Gori, Marco Maggini, and Alessandro Rossi. “Neural network training

as a dissipative process”. In: Neural Networks 81 (2016), pp. 72–80.
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LEARNING CONSISTENCY

When µ is fixed and when we allow explicit temporal dependence

on the potential, what can we say about the quality of the weights

that are developed following this ODE?

Under periodicity assumptions on the input signal x(t) also w(t)

assumes a periodic behaviour so that on similar patterns the

prediction of the model should be consistently similar4.

4Giovanni Bellettini, Alessandro Betti, and Marco Gori. “Generalization in

quasi-periodic environments”. In: arXiv preprint arXiv:1807.05343 (2018).
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VARIATIONAL LAWS



VARIATIONAL APPROACHES

Is there a more systematic approach to select parameters

trajectories?

• Variational calculus has proven to be particularly suitable for

parsimonious description of natural phenomena and laws on

general.

• It allows us to go from static (the selection of values of w

which get the gradient of the potential null) conditions to

dynamic (the choice of an entire trajectory that because of

regularity terms ends up being an ODE).

∇U = 0 −→ δ(something) = 0.
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CLASSICAL MECHANICS

Inspired by the above remarks we can look how classical mechanics

is formulated in terms if calculus of variations.

Usually Hamilton’s principle, once we define the functional

S(x) :=

∫ T

0

1

2
|ẋ |2 − U(x) =

∫ T

0
L(x , ẋ),

is described as follows

Hamilton’s principle

The solutions of the equations of Newtonian mechanic for a

system described by a potential U coincides with the extremals of

the functional S .
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Unfortunately this statement is far from being precise as it fails to

address in what kind of space of functions the functional S is

defined, and it fails to specify what we mean by the extremal of a

functional.

A more precise reformulation of Hamilton’s principle could be

Hamilton’s principle

The solution of the equations of Newtonian mechanic x̄(t) for a

system described by a potential U coincides with the stationary

(critical) point (when it is unique) of the functional S(x) defined

over the set

X := {x ∈ C∞([0,T ]) : x(0) = x̄(0), x(T ) = x̄(T )}.
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STILL NOT THERE YET...

However also this formulation has at least two major problems:

• The formulation does not include dissipation.

• In this formulation the causality principle is not met because

of the way in which the functional space X is defined.
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FIX DISSIPATION

The first of the two issues can be solved, still using the same

framework by introducing an exponential weight in front of the

Lagrangian:

S(x) −→
∫ T

0
eθt
(

1

2
|ẋ(t)|2 − U(x(t))

)
dt.

Nonetheless the causality issue still remains.
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BOUNDARY CONDITIONS VS CAUSALITY

The problem here is due to an inherent incompatibility between

Evolution problems and Variational problems for

integral functionals.

Some different ideas to win back causality in this variational

framework is therefore needed.
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DE GIORGI CONJECTURE
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A NEW PRINCIPLE FOR MECHANICS

Recently5 a two step reformulation of Classical Mechanics with

dissipation based on the De Giorgi conjecture has been proposed:

• Fix ε and minimize the functional

Fε(w) =

∫ T

0
e−t/ε

(
ε2µ

2
|ẅ(t)|2 + ε

ν

2
|ẇ(t)|2 + U(w(t))

)
dt,

on the set {w ∈ H2((0,T );RN) : w(0) = w0, ẇ(0) = w1};
• take the limit of the minima as ε→ 0.

5Matthias Liero and Ulisse Stefanelli. “A new minimum principle for

Lagrangian mechanics”. In: Journal of nonlinear science 23.2 (2013),

pp. 179–204.
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RELEVANCE IN LEARNING i

This approach seems also particularly suitable for learning:

• All the previous comments on the use of Newton’s law in

learning applies also here;

• Moreover, with this approach, it is immediate to recover

gradient dynamics (µ = 0);

• At least when T <∞ the approach can be followed also for

time dependent potentials;

• It offers a very nice interpretations in terms of minima (cf.

with the “−” in the Hamilton Principle);

• It is well posed with respect to the possibility of adding

nonholonomous penalties of the form P(t,w , ẇ).
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RELEVANCE IN LEARNING ii

• The variational framework also offers the possibility to define
the learning problems for NN in a particularly satisfying way in
terms of constraints.

• In particular both the architecture and the interaction with the

environment can be regarded as constraints to the variational

problem.

• Each constraint will produce a reaction just like it happens in

the inclined plane problem in mechanics.

1 2

3 4

5
G 1 = x1−e1, G 2 = x2−e2, G 3 = x3−σ(w31x

1+w32x
2);

G 4 = x4−σ(w41x
1+w42x

2), G 5 = x5−σ(w53x
3+w54x

4).
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VISION



VISUAL FEATURES EXTRACTION

Φ

C
ξ

Φ ( , ) = ( − ξ, ) (ξ, )

( − ξ, )

The field q is the variable of our problem and Φi is the i-th

convolutional feature map.
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FUNCTIONAL CRITERION

In particular the functional index that we are interested in is

A(q) =
1

2

(∫
D
dµΦi

)2
−λC

2

∫
D
dµΦ2

i

+
λP
2

∫
D
dtdx h(t)(Pxqij)

2 +
λK
2

∫
D
dtdx h(t)(Ptqij)

2

+
λM
2

∫
D
dµ
(
∂tΦi + vj∂jΦi

)2
.

Where dµ(x , t) = h(t)g(x) dx dt, vj(x , t) is the velocity field

(optical flow) and Px and Pt suitable differential operators.

Negative entropy Conditional entropy

Regularization Motion invariance
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VECTORIZATION

Now assume that we are working on a discrete retina X ], then we

can rearrange the field variable of our problem qij(x , t) into into a

tensor with temporal dependence:

qij(x , t)
disc−→ qijx(t)

vec−→ qk(t).

Where if we had n features, m image channels and a retina with `2

pixels, q ∈ Rn×m×`2
.

Γ(q) =

∫ T

0
h(t)

(µ
2
|q̈|2 +

ν

2
|q̇|2 + γq̇ · q̈ +

k

2
|q|2+U

(
q,C

))
dt+λMM(q),

M(q) :=

∫ T

0
dt h(t)

(
1

2
q̇M\(t)q̇ + qN\(t)q̇ +

1

2
q(t)O\(t)q(t)

)
,

Negative entropy Conditional entropy

Regularization Motion invariance
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EULER LAGRANGE

We have:

Theorem

The functional Γ, admits a minimum on the set

X = { q ∈ H2((0,T ),Rn) | q(0) = q0, q̇(0) = q1 }.

The Euler-Lagrange equation relative to the functional Γ(q)

defined on X are
µ̂(t)q(4)(t)+2 ˙̂µ(t)q(3)(t)+Z2(t)q̈(t)+Z1(t)q̇(t)+Z0(t)q(t)+∇qÛ(q,C ) = 0.

µ̂q̈(T )+γ̂q̇(T ) = 0;

−µ̂q(3)(T )− ˙̂µq̈(T )+(ν̂− ˙̂γ+λMM̂\)q̇(T )+λM(N̂])′q(T ) = 0.

We adopted the convention f̂ (t) = h(t)f (t).
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CAUSAL APPROACH TO VISION



CAUSAL FORMULATION

A further development of this theory of vision is that of using the

causal approach that follows from De Giorgi conjecture:

Fε(q) :=

∫ T

0
e−t/ε

(
ε2 ρ

2
|q̈|2 + ε

ν

2
|q̇|2 + λM

(ε
2
q̇ ·M\q̇ + εq · N\q̇

+
1

2
q · O\q

)
+ U(q,C )

)
dt.
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EULER EQUATIONS

A formal limit in the Euler Equations associated with this

functional leads to the differential equation:

ρq̈ + (ν + λMM\)q̇ + λMN\′q + λMO\q +∇U(q,C ) = 0,

that is intended to be solved with the boundary conditions

q(0) = q0, q̇(0) = q1,

with q0 and q1 assigned vectors.
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EULER EQUATIONS CONT.

Compared with the previous formulation of the theory we have:

• Second order differential equations;

• No additional boundary conditions at t = T .
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Figure 1: Different number of features and filter sizes (1st row:

n = 5, size = 5× 5; 2nd row: n = 11, size = 11× 11) in 3 videos.

28



λM = 0 10−8 10−6 10−4

S
ka

te
r ` = 1 .61±.11 .54 ± .11 .52 ± .07 .53 ± .08

` = 2 .53 ± .12 .62 ± .15 .60 ± .11 .43 ± .06

` = 3 .56 ± .17 .58 ± .20 .62 ± .10 .18 ± .16

C
ar

` = 1 .49 ± .05 .44 ± .02 .46 ± .04 .47 ± .04

` = 2 .25 ± .26 .54 ± .10 .65 ± .08 .46 ± .03

` = 3 .26 ± .34 .45 ± .22 .51 ± .11 .38 ± .20

M
a

tr
ix ` = 1 .66 ± .01 .66 ± .02 .67 ± .01 .63 ± .05

` = 2 .55 ± .13 .56 ± .14 .43 ± 0 .45 ± .04

` = 3 .64 ± .03 .54 ± .11 .35 ± .07 .40 ± .01

λM = 10−2 1 102

S
ka

te
r ` = 1 .69 ± .07 .53 ± 0 .01 ± 0

` = 2 .48 ± .06 .1 ± .1 .03 ± .01

` = 3 .16 ± .17 .04 ± .02 .03 ± .02

C
ar

` = 1 .66 ± .10 .60 ± .02 .01 ± 0

` = 2 .63 ± .11 .18 ± .32 .03 ± .01

` = 3 .24 ± .20 .09 ± .12 .04 ± .02

M
a

tr
ix ` = 1 .59 ± .03 .44 ± 0 .23 ± .02

` = 2 .62 ± .02 .35 ± .19 .13 ± .08

` = 3 .21 ± .07 .06 ± .03 .04 ± .02

Table 1: MI in different videos, up to 3 layers (` = 1, 2, 3), and for

multiple λM of the motion-based term. All layers share the same λM .
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FOR A CLOSER LOOK

• Alessandro Betti, Marco Gori, and Stefano Melacci.

“Cognitive action laws: the case of visual features”. In: IEEE

transactions on neural networks and learning systems 31.3

(2019), pp. 938–949

• Alessandro Betti, Marco Gori, and Stefano Melacci. “Learning

visual features under motion invariance”. In: Neural

Networks (2020)

• Matteo Tiezzi et al. Focus of Attention Improves Information

Transfer in Visual Features. 2020. arXiv: 2006.09229

[cs.LG]
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Thank you for listening!
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BACKUP SLIDES–SEQUENTIAL OPTIMIZATION i

Consider

Pk
ε : min

w∈Xk
ε

Jkε (w), k = 1, . . . ,K

where Jkε are defined on a fixed temporal domains

Jkε (w) :=

∫ tk

tk−1

$ε(t)
(
ε2 ρ

2
|ẅ(t)|2 + ε

ν

2
|ẇ(t)|2 + U(w(t), t)

)
dt

and the set Xk
ε ≡ Xk with

Xk :=

{w ∈ H2(0, t1) : w(0) = w0, ẇ(0) = w1} if k = 1

{w ∈ H2(tk−1, tk) : w(tk−1) = wk
ε (tk−1), ẇ(tk−1) = ẇk

ε (tk−1)} if k > 1



BACKUP SLIDES–SEQUENTIAL OPTIMIZATION ii

where wk
ε is the solution of the problem Pk

ε . Also let

w̄ε(t) :=

w0 if t = 0;

wk
ε (t) if tk−1 < t ≤ tk .

Then we conjecture that

w̄ε → w ,

where w solves{
ρẅ(t) + νẇ(t) +∇U(w(t), t) = 0;

w(0) = w0, ẇ(0) = w1.



BACKUP SLIDES–MUTUAL INFORMATION

Conditional entropy

S(Y | X ,T ,F ) = −
∫

Ω

n∑
i=1

dPX ,T ,F pi log pi

= −
∫
D
dµ(x , t)

n∑
i=1

Φi (x , t) log Φi (x , t)

Entropy

S(Y ) = −
n∑

i=1

Pr(Y = yi ) log Pr(Y = yi )

= −
n∑

i=1

(

∫
D
dµ(x , t) Φi (x , t)) · log(

∫
D
dµ(x , t) Φi (x , t))



BACKUP SLIDES–FUNCTIONAL CRITERION

In particular the functional index that we are interested in is

A(q) =
1

2

(∫
D
dµΦi

)2
−λC

2

∫
D
dµΦ2

i

+
λ1

2

∫
D
dµ
(n−1∑
i=0

Φi − 1
)2
− λ0

∫
D
dµΦi · [Φi < 0]

+
λP
2

∫
D
dtdx h(t)(Pxqij)

2 +
λK
2

∫
D
dtdx h(t)(Ptqij)

2

+
λM
2

∫
D
dµ
(
∂tΦi + vj∂jΦi

)2
.

Where dµ(x , t) = h(t)g(x) dx dt, vj(x , t) is the velocity field

(optical flow) and Px and Pt suitable differential operators.

Negative entropy Conditional entropy Normalization

Regularization Motion invariance



BACKUP SLIDES–THEOREM (A MORE PRECISE STATE-

MENT)

Theorem

Let µ = α + γ2
2 , ν = β + γ2

1 and γ = γ1γ2, if µ > γ2
2 , ν > γ2

1 ,

k > 0 then the functional Γ, admits a minimum on the set

X = { q ∈ H2((0,T ),Rn) | q(0) = q0, q̇(0) = q1 }.



BACKUP SLIDES–COEFFICIENTS

Z0 = k̂ + λMÔ\ − λM( ˙̂N\)′;

Z1 = ¨̂γ − ˙̂ν − λM( ˙̂M\ + (N̂\)′ − N̂\);

Z2 = ¨̂µ+ ˙̂γ − ν̂ − λMM̂\.



BACKUP SLIDES–FOCUS OF ATTENTION

Suppose that we know the trajectory a(t) of an attention

mechanism, then the motion invariance term can be redefined as

λM
2

∫ T

0
dt h(t)

(
dΦi (a(t), t)

dt

)2

=
λM
2

∫ T

0
dt h(t)

(
∂tΦi (a(t), t) +∇xΦi (a(t), t) · ȧ(t)

)2
,

where ȧ(t) is the velocity of the focus of attention.



BACKUP SLIDES–CHOICE OF FM , FN AND FO.

Fε(q) :=

∫ T

0
e−t/ε

(
ε2 ρ

2
|q̈|2 + ε

ν

2
|q̇|2 + λM

( fM(ε)

2
q̇ ·M\q̇ + fN(ε)q · N\q̇

+
fO(ε)

2
q · O\q

)
+ U(q,C )

)
dt.

A good choice for fM(ε) and fN(ε) is

fM(ε) = fN(ε) = ε.

Moreover since we can regard the term q · O\q to be a

potential-like term then we could make the reasonable choice

fO(ε) ≡ 1.
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