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Today’s session…

▪ Introduction to unsupervised anomaly detection

▪Deep unsupervised models

▪ Anomaly detection methods

▪ Some results



▪ Multiple deep learning methods proposed to localize anomalies in 

medical images.

▪ Fully supervised methods achieve high accuracies…

▪ …however:

1. Rely on large and diverse annotated datasets for training.

2. Specific to the anomalies annotated.

Introduction: Anomaly Detection in Medical Images

Normal or 

Abnormal?



Unsupervised Anomaly Detection

▪ Unsupervised Anomaly detection does not require annotated datasets.

▪ Multiple approaches, generically based on generative models and two steps:

1. Model the distribution of normal samples p(X): VAEs, GANs, AR…

2. Method to identify / localize anomalies by comparing a test sample with the 

learnt distribution of normal samples

▪ Datasets are expensive to create and in principle, unsupervised methods are not 

limited to the annotated anomalies. Also, in terms of data available we can expect: 

Healthy images without labels >> images with annotated anomalies



Objective: estimate p(X). Assumption, generative model:

z → X

▪ We observe X (e.g. CT Scan, MRI,...), z is unobserved latent (low 

dimensional manifold where observed images sit). In VAEs z assumed to 

z ~ N(0,I)

▪ p(X) = ∫ P(X | z) p(z) dz.  If z is continuous and P(X | z) is complicated 

likelihood (e.g. neural networks), this becomes easily intractable. Large 

datasets also makes sampling solutions (i.e. Montecarlo) not viable.

▪ In VAE we introduce a recognition model Q(z | X) [generates (μ, σ) for 

z~N(μ, σ)] and derive the evidence lower bound (ELBO):

Models: Variational Auto-Encoders (VAE)

Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling https://arxiv.org/abs/1312.6114

Evidence Lower Bound Reconstruction given z KL between recognition 

and prior for z

log P(X) − KL[Q(z|X), P(z|X)] = Ez~Q(z) [log P(X|z)] − KL[Q(z|X), P(z)]

https://arxiv.org/search/stat?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/stat?searchtype=author&query=Welling%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Welling%2C+M


▪ Training procedure:

1. Sample z ~ Q(z|X)

2. Reconstruct P(X|z)

3. Backprop to improve parameters of parametrized P and Q

▪ Problem: How do we calculate gradients through sampling step?: 

Reparametrization trick: express z~N(μ, σ) as z~μ + σε, with ε~N(0, I)

Models: Variational Auto-Encoders (VAE)

Often, likelihood P(X|z) 

assumed N(μ, σ), with σ = I 

(e.g. we just care about the 

mean, intensity of a pixel)

Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling https://arxiv.org/abs/1312.6114

X (μ, σ)    → zQ(z|X)

sample

P(X|z) X’

https://arxiv.org/search/stat?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/stat?searchtype=author&query=Welling%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Welling%2C+M


▪ We don’t model directly P(X) but learn to sample from X: we learn P(X) 

implicitly.

▪ Game between two networks:

▪Generator: G(z) to learn to generate samples X’. Generator is being 

seeded from a prior distribution (e.g. N(0,I))

▪Discriminator: D(X) to give a P(X’) of sample X’ belonging to the real 

distribution (or in more recent GANs, just realness score). The 

discriminator provides information (gradients) to the generator on how 

to change its parameters so samples generated look real (and 

discriminator cannot differentiate between the real and generated 

samples). 

Models: Generative Adversarial Networks (GAN)

z G(z) X’

X

D(X)

Score: Real or 

generated?

Generative Adversarial Networks Ian J. Goodfellow, Jean Pouget-Abadie, et. al. https://arxiv.org/abs/1406.2661

https://arxiv.org/search/stat?searchtype=author&query=Goodfellow%2C+I+J
https://arxiv.org/search/stat?searchtype=author&query=Pouget-Abadie%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Pouget-Abadie%2C+J


Models: Generative Adversarial Networks (GAN)

AVAE: Adversarial Variational Auto Encoder. Antoine Plumerault, Hervé Le Borgne, Céline Hudelo https://arxiv.org/abs/2012.11551

▪ VAE learn the mean of 

the distribution 

(reconstructions tend to 

look blurry!)

▪ GAN learns to 

generate samples, no 

incentive to cover all 

the distribution! (mode-

collapse)

▪ Implications for 

anomaly detection?

GAN samplesVAE reconstructions

https://arxiv.org/search/cs?searchtype=author&query=Plumerault%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Borgne%2C+H+L
https://arxiv.org/search/cs?searchtype=author&query=Borgne%2C+H+L
https://arxiv.org/search/cs?searchtype=author&query=Hudelot%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Hudelot%2C+C


▪ Most of literature focus on VAEs and GANs, but many other ways 

to model P(X):

▪ VAE and GAN variations (e.g. VQ-VAE)

▪ Auto-Regressive

▪ Flow models

▪ Auto-Decoder

Models: Many more options to explore!



▪We have a model that learns P(X), how do we know if a new sample is 

anomalous, or more interesting, where is anomalous? 

▪Sample and pixel-wise Anomaly Scores (AS) 

• Reconstruction error (vanilla)- Assumes that a model trained on 

normal images will not be able to reconstruct anomalies. L1 or L2 

distances between reconstruction and original images. 

• In VAE, KL Divergence (pixel-wise AS not obvious)

• Restoration approaches - Use models to turn test images into 

normal images (restore action). Then compare original vs restored. 

Generally, modify a test image to increase P(X)

Methods: Intro



▪ Experiments on Brain MR images, predicting Gliomas: 

1. Reconstruction Loss performance decrease with latent size

2. Given a model with sufficient capacity, KL Divergence term is a 

better sample-wise AS!

Methods: Reconstruction AS with VAE

Similar conclusions are described in ‘Unsupervised Anomaly Localization using Variational 

Auto-Encoders’  Zimmerer, D., Isensee, F., et al. (2019) 

Reconstruction Loss KL Divergence

AS sample-wise 

performance (ROC-AUC): 

(Brain MR Images with 

Gliomas as anomalies)

ELBO



▪ Why reconstruction does not work as Anomaly Score? 

▪ If the latent space is small, reconstructions are blurry (means!)

▪ If the latent space is large, the VAE will be able to reconstruct 

anomalies.

Methods: Reconstruction AS with VAE

- Model with 10d latent space   - - Model with 128d latent space   -



▪ Expressive VAEs reconstructing anomalies are an issue, multiple 

strategies explored:

• Use adversarial loss to check if reconstructions are still in normal 

distribution: VAE-GAN1,2

• Force the model to learn structure: add Context-Encoding tasks3

• Use KL divergence component assigned to pixels: KL-Grad4

• Restoration: Use learnt distribution to increase P(X) 5

• Estimate density of the latent space a posteriori with a GM or AR 

model (my MSc thesis)

Methods: Alternative AS

1 - Baur, C. et al. (2018) ‘Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images’

2 - Chen, X. and Konukoglu, E. (2018) ‘Unsupervised Detection of Lesions in Brain MRI using constrained 

adversarial auto-encoders’.

3 - Zimmerer, D., Kohl, S., et al. (2019) ‘Context-encoding Variational Autoencoder for Unsupervised Anomaly 

Detection -- Short Paper’.

4 - Zimmerer, D., Isensee, F., et al. (2019) ‘Unsupervised Anomaly Localization using Variational Auto-Encoders’.

5 - Chen, X. et al. (2020) ‘Unsupervised Lesion Detection via Image Restoration with a Normative Prior’.



▪ High level idea: Add a task so the model needs to learn the distribution, 

not just encode-decode: Predict occluded images sections

Methods: Context Encoding (self-supervised learning)

Pathak et al 2016



▪ Context-Encoding improves anomaly detection performance1:

(Note that author did not include adversarial loss as proposed in Pathak et al 2016)

Methods: Context Encoding

1 - Zimmerer, D., Kohl, S., et al. (2019) ‘Context-encoding Variational Autoencoder for 

Unsupervised Anomaly Detection -- Short Paper’.



▪ Restoration: Differs from a reconstruction because it includes an action 

to modify test image so it becomes in-distribution. Anomalies can be 

localized using residuals test - restoration

• With VAEs1 - Modify pixels with backpropagation so we lower a loss 

composed of VAE ELBO + Total Variation norm (keeps image 

consistent):

෡𝑿 = argmax𝑿[−𝜆 𝑿 − 𝒀 𝑇𝑉 + ELBO(𝑿)]

The above expression is used to iterate until convergence, being: 

▪ 𝜆 - weighting of the data consistency term

▪ Y - test image 

▪ X - current restoration (X = Y at t=0)

▪ ෡𝑿 - new restoration

Methods: Restoration

1 - Chen, X. et al. (2020) ‘Unsupervised Lesion Detection via Image Restoration with a Normative Prior’.



Methods: Restoration

1 - Chen, X. et al. (2020) ‘Unsupervised Lesion Detection via Image Restoration with a Normative Prior’.



Model: Vector Quantised - VAE

• Latent space is a 2d matrix of discrete variables

• Model is built around a dictionary that maps to an embedding space

• Vector Quantisation: no gradient for argmin, approximated with straight-through estimator

• MOOD Challenge implementation:

• Images pre-processed to 160x160 2d axial slices

• Encoder-Decoders with 4 ResNet blocks at each resolution

• Latent space: 

• Brain: 20x20, 128 categories

• Abdominal: 10x10, 128 categories

1 - van den Oord, A., Vinyals, O. and Kavukcuoglu, K. (2017) ‘Neural Discrete Representation Learning’.

Vector-Quantised VAE from original paper 1

𝐿 = log 𝑝 𝑥 𝑧𝑞(𝑥)) + sg 𝑧𝑒 𝑥 − 𝑒 2
2 + 𝛽 𝑧𝑒 𝑥 − sg 𝑒 2

2𝑞 𝑧 = 𝑒𝑘 𝑥 = ቊ
1 if 𝑘 = argmin𝑖 𝑧𝑒 𝑥 − 𝑒𝑖 2

0 otherwise



Model: Auto Regressive model for prior of VQ-VAE

VQ-VAE is paired with an Auto-Regressive (AR) model to learn its prior. 

𝑝 𝑥 =ෑ

𝑖

𝑁

𝑝 𝑥𝑖 𝑥1, … , 𝑥𝑖−1)

AR models are generative, they allow sampling iteratively:

X X’z

VQ-

VAE 

Dec

VQ-

VAE 

Enc

In an AR model joint probability is modelled using factorization:

34 25 33 2

15 23 42 52

7 10 11 18

0 32 17 5

AR 

model

p(z)

(i.e. Negative 

Log Likelihood)

3. 4. 2. 1.

2. 3. 4. 2.

1. 3. 3. 2.

1. 2. 3. 1.

34 34 25 34 25 33 34 25 33 2 34 25 33 2

15
(…)



Method: Sample-wise score with VQ-VAE

Assumptions:

• VQ-VAE can reconstruct abnormal regions, however….

• …localized abnormal regions translate into latent codes with low probability assigned by the 

prior model

• The AR model tent to be very confident in background areas and thus have higher 

confidence in images with a higher foreground / background ratio

Sample-wise score:

• Define a threshold λ of log-likelihood of latent codes that are highly unlikely by looking at the 

distribution in the normal holdout dataset

• Score: Sum of negative log-likelihood, considering only codes above threshold:

• MOOD Challenge implementation: λ = 7. 32 axial slices per volume are processed,  score is 

the sum over the slices

𝑆𝑐𝑜𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 =෍
𝑖

𝑁

𝜉(𝑝(𝑥𝑖))

𝜉 𝑧 = ቊ
− log 𝑧 if −log 𝑧 > 𝜆

0 otherwise



Methods: Sample-wise score with VQ-VAE

Toy slice example score:



Methods: Latent Restoration with VQ-VAEs

Pixel-wise score:

• Replace high loss latent codes with samples from AR (i.e. latent variables with NLL > λ). 

• Decode restored latents to generate image restorations X. 

• To reduce variance, generate multiple restorations (j ∈ 1,2,...,S) for each image

• Pixel-score, residual ෡𝐷, is then:

𝑆𝑐𝑜𝑟𝑒𝑝𝑖𝑥𝑒𝑙 =෍
𝑗

𝑆

𝜛𝑗 Y − 𝑋𝑗

𝜛𝑗 = softmax(𝑘 /෍
𝑖

𝑃

Y𝑖 − 𝑋𝑗
𝑖 )

• Some restorations drift too much from original image. 𝜛𝑗 is introduced to remove weight from restorations 

that have lost consistency.

• Implementation: λ = 5, S = 15, k = 3 (softmax temperature)

• Post-processing: MinPooling + AvgPooling

Y X
z

VQ-

VAE 

Dec

VQ-

VAE 

Enc

34 25 33 2

15 23 42 52

7 10 11 18

0 32 17 5

Latent with NLL > λ

z

34 25 15 2

15 23 42 52

7 10 11 18

0 32 17 5

(…)

z

34 25 15 2

15 23 42 32

7 10 11 18

0 32 17 5

(…)

z 

34 25 15 2

15 23 42 32

7 10 13 18

0 32 17 5



Methods: Latent Restoration with VQ-VAEs



Methods: Other ideas with VAEs

Additionally, are L1 or L2 a good measure to localize anomalies in medical images?

- Histogram of MRI - - Histogram of MRI (without background pixels) -

Grey matter White matter Ventricles

The distance in pixel intensities might not be relevant, some errors are penalized 

much more than others (i.e. intensities that are further away from the mean) 



▪ Idea: Avoid distance in pixel intensity and focus on predicting the tissue type. 

▪ ...but we don’t have tissue types….

▪ Approximate tissue types using clusters of intensities (kMeans). Encode 

pixels to clusters of intensities: Regression → Classification

▪ Cross-entropy as reconstruction loss and AS: Errors between tissues 

become symmetric

Methods: Other ideas with VAEs
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▪ The categorical image encoding makes a big difference in anomaly detection 

performance! 

▪ KL-Divergence is still a better Sample-wise Anomaly Score:

Methods: Other ideas with VAEs

KL Divergence

1d Bottleneck 2d (5x5) Bottleneck

ROC-AUC sample-wise for VAE loss components, intensity clustering & cross-entropy reconstruction loss

Brain MRIs, unsupervised identification of gliomas as anomaly

1d Bottleneck 2d (5x5) Bottleneck

ROC-AUC sample-wise for VAE loss components, intensity clustering & cross-entropy reconstruction loss

Brain MRIs, unsupervised identification of gliomas as anomaly

Reconstruction Loss

1d Bottleneck 2d (5x5) Bottleneck

ROC-AUC sample-wise for VAE loss components, intensity clustering & cross-entropy reconstruction loss

Brain MRIs, unsupervised identification of gliomas as anomalyL1 Reconstruction Loss Cross-Entropy 

Reconstruction Loss



▪ AnoGAN & f-AnoGAN1 - Find the equivalent healthy image from the 

GAN. Either by using backprop in latent space (original AnoGAN) or by 

using an encoder trained after GAN (fast-AnoGAN)

Methods: GAN restorations

1 - Schlegl, T. (2019) ‘f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks’

1) Train 

WGAN on 

healthy 

images

2) Train an 

Encoder to 

retrieve z

3) At 

inference 

time, AS is 

defined:

𝐴 𝑿 = 𝐴𝑟 𝑿 + 𝜆 𝐴𝑑 𝑿

Being…

𝐴𝑟 the reconstruction loss

𝐴𝑑 the discriminator loss



Results

▪ Baur, C. et al. (2021) ‘Autoencoders for Unsupervised Anomaly Segmentation in 

Brain MR Images: A Comparative Study’:  

~ 1st Restoration GMVAE, 2nd Context Encoding / AnoGAN

▪ Medical Out-of-Distribution Challenge @ MICCAI 2020

▪ Sample-wise: 1st Foreign Patch Interpolation (supervised on synthetic 

anomalies), 2nd VQ-VAE.

▪ Pixel-wise: 1st and 2nd supervised on synthetic anomalies, 3rd VQ-VAE 

shared. (VQ-VAE did very poorly on the Abdominal dataset!)

▪ MSc. Thesis (brain MRI dataset): 



▪ Unsupervised results have improved in recent year but still poor (when 

compared with supervised learning). Good research opportunity!

▪ Supervised learning on synthetic anomalies achieves significantly better 

results

▪ We have models that are able to learn the distribution of normal images 

and generate good samples …. However, open research question is how 

to leverage these to identify anomalies

▪ Healthy images without labels >> Images with annotated anomalies

…however, in datasets publicly available, it is the opposite 

(segmentation challenges,...)

Discussion & Conclusions



Q&A



Thank you!


