

Hizkuntza Teknologiako Zentroa Basque Center for Language Technology

Word Representations for Named Entity Recognition

Rodrigo Agerri

HiTZ Center - Ixa

University of the Basque Country UPV/EHU

http://hitz.eus/ https://ragerri.github.io/

Contents

- 1. Why Named Entity Recognition?
- 2. Introduction to the task
- 3. Word Representations
- 4. Multilingual Language Models
 - a. Issues with less-resourced languages
- 5. **Projecting Heterogeneous Annotations**

Textual Source

1 1 4

Following the takeover of Škoda Auto in 1991 by the Volkswagen Group

In late 2005, Porsche *took* an 18.65% *stake* in the Volkswagen Group, further *cementing their relationship*, and *preventing a takeover* of Volkswagen Group

On 26 March 2007, Porsche *took its holding* of Volkswagen AG shares to 30.9%, *triggering a takeover bid* under German Law.

Porsche could *launch a full takeover bid* for Volkswagen, Europe's biggest car manufacturer, this week if the EU's highest court makes its widely expected decision to ban a post-war law *giving* the German state *effective control over* VW.

On 16 September 2008, Porsche *increased its shares* by another 4.89%, in effect *taking control of* the company, with more than 35% of the voting rights.

Hedge funds *face* Volkswagen *storm* as Porsche *takeover* boosts shares. VW shares have *risen sharply* this week as Porsche built a 75 per cent stake, and unveiled plans to force through a deal *to take control of* the Golf and Polo car maker.

Porsche AG took step closer to controlling the much larger Volkswagen AG by upping its share holdings to 50.8% in late Monday trading.

6 Jan 2009 - Porsche has been on *a quest to takeover* VW for more than two years.

With present economic conditions shrinking Porsche's available cash, the automaker may have *to adjust or delay its plans to gain full control of* Volkswagen. In January, Porsche *raised its stake* in Volkswagen to 50.76% gaining a majority stake.

29-June-2009 Porsche Rejects VW Takeover Offer. The *power struggle* between German automakers Porsche and Volkswagen escalated on Monday with Porsche rejecting VW's *takeover bid* as unfeasible.

23 Jul 2009 – Porsche Chief Executive Wendelin Wiedeking has *stepped aside* in a sign that Volkswagen *takeover of* its local rival is almost secured.

http://www.newsreader-project.eu/

x 7 X X 7 4 1

Tasks Overview

Laparra et al. (2017)

Laparra et al. (2017)

Crosslingual timelines (SOTA)

		English			Spanisł	1	
Scorer	System	Р	R	F1	P	R	F1
	BTE	24.56	4.35	7.39	12.07	4.25	6.29
SemEval-2015	\mathbf{DLT}	21.00	11.01	14.45	12.77	8.60	10.28
	BTE	24.56	3.62	6.32	12.07	3.60	5.55
strict-evaluation	\mathbf{DLT}	21.00	9.18	12.77	12.77	7.29	9.28
	BTE	24.12	5.32	8.71	11.55	5.18	7.15
relaxed-evaluation	\mathbf{DLT}	19.39	12.95	15.53	11.47	9.72	10.52

Section 2. Tasks Overview

- Sequence Labelling: Named Entity Recognition (NER), POS tagging, Lemmatization, Aspect Based Sentiment Analysis (ABSA), Semantic Role Labelling (SRL), Temporal Detection and Normalization
- **Document Classification:** Sentiment Analysis, Fake News, Stance, Hyper Partisanism, etc.

Contents

- 1. Why Named Entity Recognition?
- 2. Introduction to the task
- 3. Word Representations
- 4. Multilingual Language Models
 - a. Issues with less-resourced languages
- 5. Projecting Heterogeneous Annotations

Named Entity Resolution

The disappearance of York University chef Claudia Lawrence is now being treated as suspected murder, North Yorkshire Police said. However detectives said they had not found any proof that the 35-year-old, who went missing on 18 March, was dead. Her father Peter Lawrence made a direct appeal to his daughter to contact him five weeks after she disappeared. His plea came at a news conference held shortly after a 10,000 reward was offered to help find Miss Lawrence. Crimestoppers said the sum they were offering was significantly higher than usual because of public interest in the case.

Named Entity Resolution (NER)

[[The disappearance of [York University chef Claudia Lawrence]] is now being treated as suspected murder, North Yorkshire Police said. However detectives said they had not found any proof that the 35-year-old, who went missing on 18 March, was dead. [Her father Peter Lawrence] made a direct appeal to his daughter to contact him five weeks after she disappeared. His plea came at a news conference held shortly after a 10,000 reward was offered to help find Miss Lawrence. Crimestoppers said [the sum] they were offering was significantly higher than usual because of public interest in the case.

Named Entity Recognition

[tim cook]PER is the ceo of [apple]ORG

Identifying spans of text that correspond to typed entities that are proper names.

BIO notation

tim cook is the ceo of apple

- Beginning of entity
- Inside entity
- Outside entity

[tim cook]_{PER} is the ceo of [apple]_{ORG}

BIO notation

 Most named entity recognition datasets have flat structure (i.e., non-hierarchical labels).

[The University of California]_{ORG}
 [The University of [California]_{GPE}]_{ORG}

• Mostly fine for named entities, but more problematic for general entities:

[[John]_{PER}'s mother]_{PER} said ...

Evaluation

_	1	2	3	4	5	6	7
	tim	cook	is	the	CEO	of	Apple
gold	B-PER	I-PER	0	0	0	0	B-ORG
system	B-PER	0	0	0	B-PER	0	B-ORG

<start, end, type>

Precision	1/3
Recall	1/2

gold	system
<1,2,PER> <7,7,ORG>	<1,1,PER> <5,5,PER> <7,7,ORG>

Learning

The classification function that we want to learn has two (main) different components:

- the formal structure of the learning method (what's the relationship between the input and output?) → Naive Bayes, logistic regression, recurrent neural network, etc.
- the representation of the data (words?)

Averaged Perceptron

- *n* sentences for training
- Weights initialization = 0
- Literations over training data
- For every labeled sentence in training, find the best sequence (z_k) using current weights
- If z_k equals to *gold sequence*, move to next sentence
- Otherwise, for every feature in the *gold* but not in prediction, add 1 to its weight, otherwise substract 1
- Average: intermediate weights assigned to every feature is divided by the number of iterations

Inputs: Training examples (x_k, y_k) Initialization: $\overline{\lambda} = 0$ Algorithm: For l = 1 to L, k = 1 to nUse Viterbi to get $z_k = \operatorname{argmax}_z \overline{\lambda} \cdot \Phi(x_k, z)$

If $z_k \neq y_k$ then $\overline{\lambda} = \overline{\lambda} + \Phi(x_k, y_k) - \Phi(x_k, z_k)$

 $\lambda_i^{av} = \sum_{l \ = \ 1 \ \text{to} \ L, \ k \ = \ 1 \ \text{to} \ n} \lambda_i^{l,k} / Ln$

Output: weights λ

Contents

- 1. Why Named Entity Recognition?
- 2. Introduction to the task
- 3. Word Representations
- 4. Multilingual Language Models
 - a. Issues with less-resourced languages
- 5. Projecting Heterogeneous Annotations

Word representations

- One-hot representation
- Distributional Semantic Representations
- Static Word Embeddings
- Contextual Word Embeddings
 - Sub-tokens
 - Characters

One-hot representation

Vocabulary: Man, woman, boy, girl, prince, princess, queen, king, monarch

	1	2	3	4	5	6	7	8	9
man	1	0	0	0	0	0	0	0	0
woman	0	1	0	0	0	0	0	0	0
boy	0	0	1	0	0	0	0	0	0
girl	0	0	0	1	0	0	0	0	0
prince	0	0	0	0	1	0	0	0	0
princess	0	0	0	0	0	1	0	0	0
queen	0	0	0	0	0	0	1	0	0
king	0	0	0	0	0	0	0	1	0
monarch	0	0	0	0	0	0	0	0	1

Each word gets a 1x9 vector representation

Distributional Semantics

Distributional similarity based representations

You can get a lot of value by representing a word by means of its neighbors

"You shall know a word by the company it keeps"

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

K These words will represent banking *▼*

You can vary whether you use local or large context to get a more syntactic or semantic clustering

4

Adapted from Manning CS224n slides

Word Clusters

Class based models learn word classes of similar words based on distributional information (~ class HMM)

- Brown clustering (Brown et al. 1992, Liang 2005)
- Exchange clustering (Martin et al. 1998, Clark 2003)
 - 1. Clinton, Jiang, Bush, Wilensky, Suharto, Reagan, ...
 - 5. also, still, already, currently, actually, typically, ...
 - 6. recovery, strength, expansion, freedom, resistance, ...

Distributional representations

Cluster the words in a corpus (dimensions = clusters)

Locatives	Hospitality	Nature
Donostiara Baionara Zurichera Gazteizera Parisera 	motel hotel restaurant resort apartment 	mountain hill ridge lake rield

Corpora for cluster training

	Million words in corpus		Million words for	training	
			Brown	Clark	Word2vec
en	Reuters RCV1	63	35	63	63
	Wikipedia (20141208)	1700	790	790	1700
	Gigaword 5th ed.	4000	-	-	4000
de	Wikipedia (20140725)	650	190	190	650
	deWac [6]	1100	500	500	1100
es	Wikipedia (20140810)	428	246	246	428
	elperiodico (1998-2002)	60	35	60	60
	Gigaword 3rd ed.	1150	330 (afp)	330 (afp)	1150
nl	Wikipedia (20140804)	235	128	128	235
eu	Wikipedia (20141208)	60	12	60	60
	Egunkaria (1999–2003)	38	28	38	38
	Berria (2003–2014)	90	78	90	90

Agerri and Rigau (2016)

Clustering-based features

Local Features

Features generated for the Basque sentence "Morras munduko txapeldun izan zen juniorretan 1994an, Ekuadorko hiriburuan, Quiton". English: Morras was junior world champion in 1994, in the capital of Ecuador, Quito. Current token is 'Ekuadorko'.

Feature	Wi-2	w_{i-1}	Wi	w_{i+1}	<i>wi</i> +2
Token Token shape Previous pred	w = 1994an wc = 1994an,4d pd = null	w =, wc =,,other pd = other	w = ekuadorko wc = ekuadorko,ic pd = null	w = hiriburuan wc = hiriburuan,lc pd = null	w =, wc =,,other pd = other
Brown token	bt = 0111 bt = 011111		bt = 0010 bt = 001001	bt = 0101 bt = 010110	
Brown token, class	c,bt = 4d,0111 c,bt = 4d,011111		c,bt = ic,0010 c,bt = ic,001001	c,bt = lc,0101 c,bt = lc,010111	
Clark-a Clark-b	ca = 158 cb = 149	ca = 0 cb = 0	ca = 175 cb = 176	ca = 184 cb = 104	ca = 0 cb = 0
Word2vec-a Word2vec-b	w2va = 55 $w2vb = 524$	w2va = 0 w2vb = 0	w2va = 14 $w2vb = 464$	w2va = 14 w2vb = 139	w2va = 0 $w2vb = 0$
Prefix (w_i) Suffix (w_i) Bigram (w_i) Trigram (w_i) char n-grams (w_i)	pre = Eku; pre = Ekua suf = o; suf = ko; suf = rko pw,w = "Ekuadorko; pwc,w ppw,pw,w = 1994an, "Ekua ng = adorko; ng = rko; ng	o; suf = orko vc = other,ic; w,nw = E dorko; ppwc,pwc,wc = = dorko; ng = ko; ng =	kuadorko,hiriburuan; wc,nc = 4d,other,ic; = orko	ic,lc	

Corpora used in ixa-pipe-nerc

	Corpus	Source	Number of Tokens and Named Entities					
·			train		dev		tes	t
			tok	ne	tok	ne	tok	ne
en	CoNLL 2003	Reuters RCV1	203621	23499	51362	5942	46435	5648
de	CoNLL 2003	Frankfurter Rundschau 1992	206931	11851	51444	4833	51943	3673
	GermEval 2014	Wikipedia/LCC news	452853	31545	41653	2886	96499	6893
es	CoNLL 2002	EFE 2000	264715	18798	52923	4352	51533	3558
nl	CoNLL 2002	De Morgen 2000	199069	13344	36908	2616	67473	3941
eu	Egunkaria	Egunkaria 1999-2003	44408	3817		90 - 90 90 90 90 90 90 90 90 90 90 90 90 90	15351	931
en	MUC7	newswire					53749	3514
	Wikigold	Wikipedia 2008					39007	3558
	Wikinews	Wikinews 2013					13957	1432
nl	SONAR-1	various genres					1000000	62505
	Wikinews	Wikinews 2013					13425	1545
es	Ancora 2.0	newswire	547198	36938				
	Wikinews	Wikinews 2013	15853	1706				

CoNLL 2003 results

	De	evelopme	ent		Test	
Features	Р	R	F1	Р	R	F1
Local (L)	93.02	87.75	90.31	87.27	81.32	84.19
L + Brown reuters (BR)	92.83	89.33	91.05	90.28	86.79	88.50
L + Clark wiki 600 (CW600)	93.98	90.58	92.24	90.85	87.16	88.97
L + Word2vec giga 200 (W2VG200)	93.16	89.90	91.45	89.64	85.06	87.29
L + Word2vec wiki 400 (W2VW400)	93.22	90.02	91.59	88.98	85.09	86.99
L + BR + CW600 + W2VW400 (light)	94.16	91.96	93.04	91.20	89.36	90.27
light + CR600 + W2VG200 (comp)	94.32	92.22	93.26	91.75	89.64	90.69
comp + BW (best cluster)	94.21	92.23	93.26	91.67	89.98	90.82
comp + dict	94.60	92.78	93.68	91.86	90.53	91.19
BR+CR600-CW600+W2VG200+dict	94.58	92.53	93.54	92.20	90.19	91.18
charngram 1:6 + en-91-18	94.56	92.81	93.68	92.16	90.56	91.36
Stanford NER (distsim-conll03)	93.64	92.27	92.95	89.37	87.95	88.65
Illinois NER	-	-	93.50	n/a	n/a	90.57
Turian et al. (2010)	94.11	93.81	93.95	90.10	90.61	90.36
Passos et al. (2014)	-	-	94.46	-	-	90.90

Agerri and Rigau (2016), In Artificial Intelligence Journal.

(adapted from NAACL 2019 Transfer learning tutorial)

Multilingual results

NERC	eu	en	es	nl	de
ixa-pipe-nerc	75.70	91.36	84.16	85.04	76.48
Passos et al. 2014	-	90.90	—		
Ratinov and Roth 2009	-	90.57		<u></u>	—
Stanford NER	_	88.65	_	—	_
CMP (2002-03)	-	85.00	81.39	77.05	_
C&C	—	—	—	79.63	—
Eihera	71.31	_	_	_	_
ExB (2014)	_	-	_	_	76.38

Agerri and Rigau (2016), In Artificial Intelligence Journal.

Basque results

Features	Р	R	F1
Local	70.52	60.27	65.00
L + Brown egunkaria (BE)	74.54	67.59	70.90
L + Clark egunkaria 200 (CE200)	76.76	68.92	72.63
L + Clark wiki 200 (CW200)	75.57	65.60	70.23
L + Word2vec egunkaria 300 (W2VE300)	74.04	62.71	67.91
L + Word2vec berria 600 (W2WB600)	74.11	64.82	69.15
BE+C(EW)200+ W2V(E300+B600) (eu-cluster)	81.36	73.14	77.03
eu-cluster (4 classes)	81.36	70.78	75.70
Alegria et al. (2006)	72.50	70.24	71.35

Agerri and Rigau (2016), In Artificial Intelligence Journal.

Word Vector Representations

Similar idea:

Word meaning is represented as a (dense) vector – a point in a (medium-dimensional) vector space

Neural word embeddings combine vector space semantics with the prediction of probabilistic models (Bengio et al. 2003, Collobert & Weston 2008, Huang et al. 2012)

0.286 0.792 -0.177 -0.107 0.109 -0.542 0.349 0.271

Static Word Vectors

uob	
cat	
lion	
tiger	tors
elephant	vec
cheetah	rd
monkey	No
rabbit	
mouse	
rat	

dog

-0.4	0.37	0.02	-0 34
-0.4	0.57	0.02	-0.54
0.15	-0.02	-0.23	-0.23
0.19	-0.4	0.35	-0.48
-0.08	0.31	0.56	0.07
-0.04	-0.09	0.11	-0.06
0.27	-0.28	-0.2	-0.43
-0.02	-0.67	-0.21	-0.48
0.04	-0.3	-0.18	-0.47
0.09	-0.46	-0.35	-0.24
0.21	-0.48	-0.56	-0.37

Dimensions

animal domesticated pet fluffy

https://projector.tensorflow.org/

Towards contextual vectors

One vector for each word in a fixed vocabulary

Towards contextual vectors

Problem 1: Word ambiguity

"Washington"

0

- Last name
- State / city

. . .

Sports team

- Classic word embeddings conflate all meanings into single vector
- Contextualized embeddings?

Problem 2: Fixed vocabulary

- What is a word? Tokenizer decides?
 - o "48-year-old"
 - "Hotelzimmer" (hotel room)
- Long-tailed distribution of words
 - Rare words?
 - Out of vocabulary words?
 - "coooooool"
- Meaningful embeddings for any word?

One vector for each word in a fixed vocabulary

(adapted from Akbik et al. 2018)

Flair contextual character-based

Language modeling:

 Train recurrent neural network (RNN) to predict the next word in a sequence of words

Character-level language modeling:

- Train RNN to predict the next *character* in a sequence of *characters*
- No tokenization
- Small vocabulary

Akbik et al. 2018. COLING

Flair character-based embeddings

- sentiment
- topic

Flair: string-based and contextual

- Pass sentence as sequence of characters into two character-level language models
- Retrieve the internal states before first and after last character for each word
- Combine forward and backward states to form embedding Akbik et al. (2018) in COLING.

Flair: string-based and contextual

TRANSFER LEARNING

Akbik et al. (2018) in COLING.

Flair: string-based and contextual

RESULTS

Approach	NER-EnglishNER-CF1-scoreF1-score		Chunking F1-score	POS Accuracy
proposed				
PROPOSED	91.97±0.04	85.78 ± 0.18	96.68±0.03	97.73±0.02
PROPOSED+word	93.07±0.10	88.20 ± 0.21	96.70±0.04	97.82 ± 0.02
PROPOSED+CHAR	91.92 ± 0.03	85.88 ± 0.20	96.72±0.05	97.8 ± 0.01
PROPOSED+word+char	93.09±0.12	88.32 ± 0.20	96.71±0.07	97.76±0.01
PROPOSED+ALL	92.72±0.09	n/a	96.65 ± 0.05	97.85±0.01
baselines				
HUANG	88.54 ± 0.08	82.32 ± 0.35	95.4±0.08	96.94±0.02
LAMPLE	89.3±0.23	83.78 ± 0.39	95.34±0.06	97.02 ± 0.03
Peters	92.34±0.09	n/a	96.69±0.05	$97.81 {\pm}~0.02$

Akbik et al. (2018) in COLING.

(adapted from NAACL 2019 Transfer learning tutorial)

Contextual embeddings (ii)

- Instead of learning one vector per word, learn a vector that depends on context
- f(play | The kids play a game in the park.)
- f(play | The Broadway play premiered yesterday.)

Transformers

Devlin et al 2019. In NAACL

(adapted from NAACL 2019 Transfer learning tutorial)

Contents

- 1. Why Named Entity Recognition?
- 2. Introduction to the task
- 3. Word Representations
- 4. Multilingual Language Models
 - a. Issues with less-resourced languages
- 5. Projecting Heterogeneous Annotations

Multilingual BERT

As to why M-BERT generalizes across languages, we hypothesize that having word pieces used in all languages (numbers, URLs, etc) which have to be mapped to a shared space forces the co-occurring pieces to also be mapped to a shared space, thus spreading the effect to other word pieces, until different languages are close to a shared space.

Devlin et al . 2019. In NAACL.

Basque Morphology

Basque lemmatized	Basque	Spanish lemmatized	Spanish
etxe	etxe	casa	casa
	etxea		casas
	etxeak		
	etxean		
	etxearen		
	etxeek		
	etxeen		
	etxe etako		
	etxeetan		
	etxeetara		
	etxeko		
	etxekoak		
	etxera		
	etxetatik		
	etxetik		
	etxez		

Text Representations for Basque

- pre-trained language models allow to build rich multilingual representations of text (mBERT, XML-r)
- Expensive to train
- Suboptimal as less-resourced languages share the quota of substrings and parameters
- en-wiki 2.5K million words vs eu-wiki 35 million
- Tokenization
 - mBERT: Medi #kua #rene #ra
 - BERTeus: Mediku #aren #era (to-the-doctor)
 - » doctor # [the] # to

Basque Media Corpus (BMC)

	Text type	Million tokens
Wikipedia	enciclopedia	35M
Berria newspaper	news	81M
EiTB	news	28M
Argia magazine	news	16M
Local news sites	news	64.6M
BMC		224.6M

Basque NER state of the art

	Precision	Recall	F1
Static Embeddings			
FastText-Wikipedia	72.42	50.28	59.23
FastText-Common-Crawl	72.09	45.31	55.53
FastText-BMC	74.12	67.33	70.56
Flair embeddings			
Flair-official	81.86	79.89	80.82
Flair-BMC	84.32	82.66	83.48
BERT Language Models			
mBERT-official	81.24	81.80	81.52
BERTeus	87.95	86.11	87.06
Baseline			
(Agerri and Rigau, 2016)	80.66	73.14	76.72

Table 5: Basque NER results on EIEC corpus.

Agerri et al. (2020). In LREC

Multilingual Transformers •

- Share vocabulary and representations across languages by training one model on many (100+) languages.
- Enables cross-lingual pretraining by itself
- Leads to under-representation of low-resource languages (Agerri et al. 2020)

Contents

- 1. Why Named Entity Recognition?
- 2. Introduction to the task
- 3. Word Representations
- 4. Multilingual Language Models
 - a. Issues with less-resourced languages
- 5. **Projecting Heterogeneous Annotations**

Combine and project

- Spanish NER shared task 2020:
 - 1M corpus annotated by the Academy of the Spanish Language (RAE)
- Our approach:
 - Flair LMs: Oscar corpus, Gigaword+Wikipedia
 - **Transformers**: Bertin (Gigaword+Wikipedia), XLM-RoBERTa (Common Crawl) and mBERT (Wikipedia + books)
- **Project annotations** (various strategies)

Experimental Setup

- Flair pre-trained Spanish LM
 - Wikipedia
- Public pre-trained Transformer LMs:
 - BETO (various sources)
 - XLM-RoBERTa (Common Crawl 2.5TB)
 - mBERT (Wikipedia + books)
- Our own LMs:
 - Flair-GW: GigaWord + Wikipedia (11GB)
 - Flair-Oscar: Oscar Spanish Corpus (157GB)
- Project annotations

5-1 projections

Projecting Annotations

C	Condition	Deci	sion
4	> agreement	Keep	o Label
=	< 3 agreement	Back	coff:
		1. 2. 3.	No Prediction (O) Trust one system Use probability scores

> 1.5 F1 score improvement over best individual system

Heterogeneity of systems/sources crucial

Results

		De	evelopme	nt		Test			
	System	Precision	Recall	F1 score	Precision	Recall	F1 score		
S1	Flair-Oscar + FT	89.65 89.36 89.51			88.86	88.63	88.74		
S2	Flair-Oscar + FT (dev)	89.67	89.53	89.60	88.97	88.75	88.86		
S3	Pool-Oscar + FT (dev)	89.85	89.63	89.79	89.07	88.85	88.96		
S4	Pool-Oscar + FT e1	89.78	89.72	89.75	89.29	88.82	89.07		
S5	Flair-Oscar + FT BIO	89.71	89.58	89.64	89.19	88.78	88.99		
S6	BETO	89.64	89.34	88.99	87.19	88.36	87.77		
S7	mBERT	87.90	88.90	88.40	87.03	87.75	87.39		
S8	XLM-RoBERTa	88.29	89.54	88.91	87.37	88.48	87.92		
P1	S2-S3-S6-S7-S8	91.32	90.77	91.04	90.70	88.11	89.38		
P2	S2-S4-S6-S7-S8	91.10	90.59	90.84	90.81	88.06	89.42		
P3	S3-S4-S6-S7-S8	91.19	90.72	90.96	90.50	90.17	90.34		

> 1.3 F1 score improvement over best individual system

Capitel 2020 official results

		PER L			LOC		ORG			отн			Micro avg.			Macro avg.			
Sys	Team	Р	\mathbf{R}	\mathbf{F}_1															
(1)	ragerri	96.40	97.46	96.93	90.47	91.74	91.10	88.63	87.31	87.96	83.36	80.68	82.00	90.50	90.17	90.34	90.43	90.17	90.30
(2)	ragerri	96.50	97.46	96.98	90.19	91.27	90.73	88.05	87.21	87.63	84.37	81.02	82.66	90.46	90.09	90.27	90.39	90.09	90.23
(3)	ragerri	96.69	97.60	97.14	90.56	91.14	90.85	88.03	87.24	87.63	83.39	80.56	81.95	90.42	90.04	90.23	90.36	90.04	90.19
(4)	mcuadros	93.48	96.70	95.06	89.36	88.03	88.69	85.76	85.87	85.82	79.63	77.34	78.47	87.88	88.09	87.99	87.81	88.09	87.94
(5)	yanghao	94.30	96.16	95.22	87.30	89.86	88.56	84.99	85.94	85.46	79.52	77.69	78.59	87.38	88.43	87.90	87.32	88.43	87.87
(6)	lirondos	92.48	94.46	93.46	83.42	86.97	85.15	83.76	80.43	82.06	75.03	69.12	71.95	84.93	84.12	84.52	84.75	84.12	84.39
(7)	LolaZarra	91.52	92.62	92.07	83.39	80.41	81.87	80.10	83.39	81.71	78.31	73.72	75.95	83.93	83.77	83.85	83.90	83.77	83.80
(8)	lirondos	94.37	90.72	92.51	85.68	83.35	84.50	84.20	78.14	81.06	65.47	71.08	68.16	83.93	81.82	82.86	84.33	81.82	83.01
(9)	lirondos	93.23	90.09	91.63	82.05	82.54	82.29	84.55	73.85	78.84	63.89	67.17	65.49	82.67	79.46	81.03	83.01	79.46	81.11

Mila esker! Thanks!

References

- Rodrigo Agerri, Iñaki San Vicente, Jon Ander Campos, Ander Barrena, Xabier Saralegi, Aitor Soroa and Eneko Agirre (2020). <u>Give your Text</u> <u>Representation Models some Love: the Case for Basque</u>. In LREC 2020.
- Rodrigo Agerri, German Rigau, <u>Language independent sequence</u> <u>labelling for Opinion Target Extraction</u>. <u>Artificial Intelligence</u>, 268 (2019) 85-95.
- Egoitz Laparra, Rodrigo Agerri, Itziar Aldabe, German Rigau.
 <u>Multi-lingual and Cross-lingual timeline extraction</u>. <u>Knowledge-Based</u> <u>Systems</u>, 133, 77-89, 2017
- R. Agerri, G. Rigau, <u>Robust multilingual Named Entity Recognition with</u> <u>shallow semi-supervised features</u>. <u>Artificial Intelligence</u>, 238 (2016) 63-82.